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Tolerant Testing of Graph Isomorphism

Graph Isomorphism
Graphs Gu and Gk are isomorphic if there exists a bijection ψ : V (Gu)→ V (Gk)
such that for all pair of vertices u, v ∈ V (Gu), the edges {u, v} ∈ E(Gu) if and
only if {ψ(u), ψ(v)} ∈ E(Gk).

∼=

GI Distance

For a bijection φ : Vu→ Vk, the distance between Gu and Gk is defined as

dφ(Gu, Gk) :=

∣∣∣∣{(u, v) :
Exactly one among (u, v) ∈ Eu

or (φ(u), φ(v)) ∈ Ek holds

}∣∣∣∣
The GI DISTANCE between Gu and Gk is defined as

d(Gu, Gk) := min
φ:Vu→Vk

dφ(Gu, Gk)

How to access a graph?

• Graphs can be accessed by querying the entries of the adjacency matrix.

(ε1, ε2)-GI Testing
For a known graph Gk and an unknown graph Gu (both on n vertices) and two
proximity parameters ε1 and ε2 with 0 ≤ ε1 < ε2 ≤ 1, want to decide whether
d(Gu, Gk) ≤ ε1n

2 or d(Gu, Gk) ≥ ε2n
2?

What is the query complexity of (ε1, ε2)-GI testing?

Known Result
Fischer-Matsliah (SICOMP’08) proved that the query complexity of non-tolerant
GI (when ε1 = 0), is Θ̃(

√
n).

Tolerant Testing of EMD

Earth Mover Distance (EMD)

The Earth Mover’s Distance between two probability distributions p and q over a
Hamming cube H = {0, 1}n is denoted by EMD(pu, pk) and defined as the opti-
mum solution to the following linear program:

min
∑
i,j∈H

fijdH(i, j)

Subject to
∑
j∈H

fij = pu(i) ∀i ∈ H &
∑
i∈H

fij = pk(j) ∀j ∈ H

How to access a distribution?

• Accessing a distribution via samples is equivalent to samples with replacement
from a multi-set. Thus

EMD(Su, Sk) , n · EMD(pu, pk)

• For multi-sets, both sampling with and without replacement are possible. We
focus on sampling without replacement model here.

(γ1, γ2)-EMD Testing
For a known probability distribution pk and an unknown probability distribu-
tion pu, accessed by samples without replacement, want to decide whether
EMD(pu, pk) ≤ γ1 or EMD(pu, pk) ≥ γ2 for 0 ≤ γ1 < γ2 ≤ 1?

What is the minimum number of samples WITHOUT replacement
required for (γ1, γ2)-EMD testing?

Known Results
∗O(n) samples without replacement are enough to decide (γ1, γ2)-EMD. This

follows from learning unknown distribution
• The best lower bound of (γ1, γ2)-EMD is Ω(n1−o(1)) samples without replace-
ment following Valiant (STOC’08).

Theorem: Tolerant GI Testing ≡ Tolerant EMD Testing WITHOUT replacement
Let QGI(Gu, Gk) denote the number of adjacency queries to Gu, required to decide (ε1, ε2)-GI and QWOREMD denote the number of samples
without replacement required to decide (γ1, γ2)-EMD. Then

QGI(Gu, Gk) = Θ̃ (QWOREMD(n))

Sketch of Proof

• Upper bound: Non trivial generalization of Fischer-Matsliah’s al-
gorithm of non-tolerant testing.

• Lower bound: Follows from a pure reduction.

Implications

• The query complexity for tolerant GI testing is Ω(n1−o(1)).

• Lower bound reduction technique holds for other computation mod-
els, say for communication complexity model.

• Using our lower bound reduction, we give a proof of Fischer-
Matsliah’s lower bound for (0, ε2)-GI.

Communication Complexity
• Question: Alice and Bob have graphs GA and GB respectively and
want to decide if d(GA, GB) is less than ε1 or more than ε2 by com-
municating among themselves.

• Randomized communication complexity of non tolerant GI is O(1)

whereas deterministic communication complexity of non tolerant GI
(hence tolerant GI) is Ω(n2)

• Our theorem gives an equivalence of tolerant GI and tolerant EMD
in the communication setting.

Open Problems
• Can Valiant-Valiant’s lower bound (STOC’11) of Ω( n

log n) for (γ1, γ2)-
EMD testing with replacement be extended to without replacement?

• What is the randomized communication complexity of (ε1, ε2)-GI?


