Interplay between Graph Isomorphism and Earth Mover's Distance in the Query and Communication Worlds

Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, Sayantan Sen
Indian Statistical Institute, Kolkata, India

Tolerant Testing of Graph Isomorphism

Graph Isomorphism
 Graphs G_{u} and G_{k} are isomorphic if there exists a bijection $\psi: V\left(G_{u}\right) \rightarrow V\left(G_{k}\right)$ such that for all pair of vertices $u, v \in V\left(G_{u}\right)$, the edges $\{u, v\} \in E\left(G_{u}\right)$ if and

 only if $\{\psi(u), \psi(v)\} \in E\left(G_{k}\right)$

GI Distance
For a bijection $\phi: V_{u} \rightarrow V_{k}$, the distance between G_{u} and G_{k} is defined as

$$
d_{\phi}\left(G_{u}, G_{k}\right):=\left|\left\{(u, v): \begin{array}{l}
\text { Exactly one among }(u, v) \in E_{u} \\
\text { or }(\phi(u), \phi(v)) \in E_{k} \text { holds }
\end{array}\right\}\right|
$$

The GI Distance between G_{u} and G_{k} is defined as

$$
d\left(G_{u}, G_{k}\right):=\min _{\phi: V_{u} \rightarrow V_{k}} d_{\phi}\left(G_{u}, G_{k}\right)
$$

How to access a graph?

- Graphs can be accessed by querying the entries of the adjacency matrix.

$\left(\epsilon_{1}, \epsilon_{2}\right)$-GI Testing

For a known graph G_{k} and an unknown graph G_{u} (both on n vertices) and two proximity parameters ϵ_{1} and ϵ_{2} with $0 \leq \epsilon_{1}<\epsilon_{2} \leq 1$, want to decide whether $d\left(G_{u}, G_{k}\right) \leq \epsilon_{1} n^{2}$ or $d\left(G_{u}, G_{k}\right) \geq \epsilon_{2} n^{2} ?$

What is the query complexity of $\left(\epsilon_{1}, \epsilon_{2}\right)$-GI testing?

Known Result

Fischer-Matsliah (SICOMP'08) proved that the query complexity of non-tolerant GI (when $\epsilon_{1}=0$), is $\widetilde{\Theta}(\sqrt{n})$.

Tolerant Testing of EMD

Earth Mover Distance (EMD)

The Earth Mover's Distance between two probability distributions p and q over a Hamming cube $H=\{0,1\}^{n}$ is denoted by $E M D\left(p_{u}, p_{k}\right)$ and defined as the optimum solution to the following linear program:

$$
\begin{aligned}
\min & \sum_{i, j \in H} f_{i j} d_{H}(i, j) \\
\text { Subject to } & \sum_{j \in H} f_{i j}=p_{u}(i) \forall i \in H \& \sum_{i \in H} f_{i j}=p_{k}(j) \forall j \in H
\end{aligned}
$$

How to access a distribution?

- Accessing a distribution via samples is equivalent to samples with replacement from a multi-set. Thus

$$
E M D\left(S_{u}, S_{k}\right) \triangleq n \cdot E M D\left(p_{u}, p_{k}\right)
$$

- For multi-sets, both sampling with and without replacement are possible. We focus on sampling without replacement model here.

$\left(\gamma_{1}, \gamma_{2}\right)$-EMD Testing

For a known probability distribution p_{k} and an unknown probability distribution p_{u}, accessed by samples without replacement, want to decide whether $E M D\left(p_{u}, p_{k}\right) \leq \gamma_{1}$ or $E M D\left(p_{u}, p_{k}\right) \geq \gamma_{2}$ for $0 \leq \gamma_{1}<\gamma_{2} \leq 1$?

What is the minimum number of samples WITHOUT replacement required for $\left(\gamma_{1}, \gamma_{2}\right)$-EMD testing?

Known Results

$* O(n)$ samples without replacement are enough to decide $\left(\gamma_{1}, \gamma_{2}\right)$-EMD. This follows from learning unknown distribution
-The best lower bound of $\left(\gamma_{1}, \gamma_{2}\right)$-EMD is $\Omega\left(n^{1-o(1)}\right)$ samples without replacement following Valiant (STOC'08).

Theorem: Tolerant GI Testing \equiv Tolerant EMD Testing WITHOUT replacement

Let $Q_{G I}\left(G_{u}, G_{k}\right)$ denote the number of adjacency queries to G_{u}, required to decide $\left(\epsilon_{1}, \epsilon_{2}\right)$-GI and $Q W O R_{E M D}$ denote the number of samples without replacement required to decide $\left(\gamma_{1}, \gamma_{2}\right)$-EMD. Then

$$
Q_{G I}\left(G_{u}, G_{k}\right)=\widetilde{\Theta}\left(Q W O R_{E M D}(n)\right)
$$

Sketch of Proof

- Upper bound: Non trivial generalization of Fischer-Matsliah's algorithm of non-tolerant testing.
- Lower bound: Follows from a pure reduction.

Implications

- The query complexity for tolerant GI testing is $\Omega\left(n^{1-o(1)}\right)$.
- Lower bound reduction technique holds for other computation models, say for communication complexity model.
- Using our lower bound reduction, we give a proof of FischerMatsliah's lower bound for $\left(0, \epsilon_{2}\right)$-GI.

Communication Complexity

- Question: Alice and Bob have graphs G_{A} and G_{B} respectively and want to decide if $d\left(G_{A}, G_{B}\right)$ is less than ϵ_{1} or more than ϵ_{2} by communicating among themselves.
- Randomized communication complexity of non tolerant GI is $O(1)$ whereas deterministic communication complexity of non tolerant GI (hence tolerant GI) is $\Omega\left(n^{2}\right)$
- Our theorem gives an equivalence of tolerant GI and tolerant EMD in the communication setting.

Open Problems

- Can Valiant-Valiant's lower bound (STOC'11) of $\Omega\left(\frac{n}{\log n}\right)$ for $\left(\gamma_{1}, \gamma_{2}\right)$ -

EMD testing with replacement be extended to without replacement?
-What is the randomized communication complexity of $\left(\epsilon_{1}, \epsilon_{2}\right)$-GI?

